ارزیابی استانهای شمال غربی ایران از نظر شاخص‌های غالب اقتصادی آنها با مدل ویکور(1395-1390)

نوع مقاله: علمی پژوهشی

نویسنده

کارشناسی ارشد برنامه ریزی آمایش سرزمین،دانشکده جغرافیا،دانشگاه تهران،ایران

چکیده

دست یابی و نیل به توسعه، اگرچه امروز به طور مشخص، یکی از آمال و آرزوهای شیرین و دور از دسترس بسیاری از کشورهای جهان می باشد، اما اندیشه پیشرفت و راههای تحقق آن، قدمتی طولانی دارد و در طی دوره های مختلف حیات بشری، جوامع مختلف و به خصوص رقیب، همواره در تلاش بوده اند که برای بسط قدرت و توانایی های خویش، به جدیدترین شیوه ها و ابزارهای تسلط بر طبیعت و استفاده بهتر و کاراتر از امکانات آن دست یابند. هدف این مقاله دستیابی به برتری نسبی هر استان از طریق ارزیابی شاخص های غالب اقتصادی است. بدین منظور ابتدا با استفاده از روش آنتروپی شانون به وزن دهی هر یک از 11 شاخص اقتصادی پرداخته، سپس به منظور دستیابی به نتایج تحقیق، با استفاده از داده های موجود در مرکز آمار و استفاده از تکنیک تصمیم گیری چندمعیاره (VIKOR) برای داده های سال 1395 تحلیلی صورت گرفته است. با توجه به هدف تحقیق که ارزیابی استانهای شمال غربی ایران از لحاظ شاخص های غالب اقتصادی با مدل ویکور می باشد پنج استان آذربایجان شرقی، آذربایجان غربی، اردبیل، زنجان و کردستان مورد مطالعه قرار گرفتند. در این راستا برای محاسبه داده های کمی در مراحل مختلف مدل از نرم افزار Excel و برای ترسیم نقشه ی سطح برخورداری استانها از نرم افزارArc GIS10.3 استفاده شده است. نتایج نیز با توجه به شاخص های مورد نظر نشان می دهد که استان های آذربایجان غربی به دلیل داشتن کمترین مقدار عددی شاخص ویکور معادل 0.180 در بالاترین رتبه و آذربایجان شرقی با مقدار شاخص 0.5 در رتبه دوم و استان های اردبیل ، کردستان و زنجان با مقدار عددی شاخص به ترتیب معادل 0.978، 0.984 و 1 در رتبه های سوم تا پنجم قرار دارند.

تازه های تحقیق

مواد و روش ها

رویکرد پژوهش حاضر از نوع پژوهش های کمی و از نظر شیوه گردآوری داده ها مبتنی بر داده های کتابخانه ای-اسنادی و با مراجعه به مرکز آمار ایران و دریافت داده ها از دفاتر مربوطه می باشد که بصورت توصیفی- تحلیلی انجام گرفته است. در ابتدا شاخص های مرتبط را شناسایی و سپس سهم هر یک از استانها استخراج گردید. با توجه به یکسان نبودن اهمیت شاخص ها، از طریق مدل آنتروپی شانون وزن این شاخص ها تعیین گردید. در مرحله بعد جهت ارزیابی استانها مدل ویکور(VIKOR) به کار گرفته شد. این روش از طریق ارزیابی گزینه ها بر اساس شاخص ها، گزینه ها را اولویت بندی یا رتبه بندی می کنند. در انتها بر مبنای خروجی ها و نتایج بدست آمده راهکارهای مناسب ارایه گردیده است. برای محاسبه داده های کمی در مراحل مختلف مدل از نرم افزار Excel و برای تهیه نقشه از نرم افزار Arc GIS10.3 استفاده گردیده است.

 

بحث و یافته ها

شاخص های مورد استفاده: در این مقاله برای شناسایی سهم استانهای مورد بررسی از 11 شاخص مهم اقتصادی در سال 1395 استفاده شده است. شاخص های مورد استفاده در این پژوهش طبق جدول شماره 1 عبارتنداز:

جدول 1-شاخص های غالب اقتصادی

شاخص های غالب اقتصادی

X1: نرخ مشارکت اقتصادی مردان(دفتر جمعیت، نیروی کار و سرشماری)

X2: نرخ مشارکت اقتصادی زنان(دفتر جمعیت، نیروی کار و سرشماری)

X3: نسبت شاغلان در بخش صنعت به کل شاغلین(دفتر جمعیت، نیروی کار و سرشماری)

X4: نسبت شاغلان در بخش کشاورزی به کل شاغلین(دفتر جمعیت، نیروی کار و سرشماری)

X5: نسبت شاغلان در بخش حمل و نقل به کل شاغلین(دفتر جمعیت، نیروی کار و سرشماری)

X6: درصد شاغلان بخش ساختمان نسبت به کل شاغلین(دفتر جمعیت، نیروی کار و سرشماری)

X7:درصد سهم استان در محصول ناخالص داخلی(دفتر حساب های اقتصادی)

X8: درصد سهم ارزش افزوده در بخش صنعت (دفتر حساب های اقتصادی)

X9: درصد سهم ارزش افزوده در بخش آموزش(دفتر حساب های اقتصادی)

X10:درصد سهم ارزش افزوده در بخش بهداشت(دفتر حساب های اقتصادی)

X11: درصد سهم ارزش افزوده در بخش معدن (دفتر حساب های اقتصادی)

مرکز آمار ایران، 1395

روش ویکور از طریق ارزیابی گزینه ها براساس معیارها، گزینه ها را اولویت بندی یا رتبه بندی می کند. در تکنیک ویکور معیارها وزن دهی نمی شوند بلکه معیارها از طریق روش های دیگر ارزیابی می شود و سپس گزینه ها براساس معیارها و با ترکیب در ارزش معیارها، ارزیابی شده و رتبه بندی می شوند. پس از جمع آوری داده ها از طریق آمارهای موجود و تبدیل آنها به شاخص های مورد نظر، ماتریس داده های خام هریک از شاخص ها در محدوده ی مورد مطالعه تعریف شد. ماتریس تصمیم گیری که متشکل از گزینه ها(سطرها) و شاخص ها(ستون ها) است. گزینه های ما استانهای شمال غربی ایران می باشد و شاخص ها 11 مورد هستند که در جدول شماره 1 به آنها اشاره شد و کدگذاری گردیدند(X1تاX11). پس از تشکیل ماتریس تصمیم گیری، نرمال سازی این ماتریس است. هر مسأله ای ممکن است دارای چندین شاخص باشد که دانستن اهمیت نسبی شاخص ها ضرورت دارد، از این رو به هر شاخص یک وزن داده می شود که این وزن ها اهمیت نسبی هر شاخص را نسبت به سایر شاخص ها مشخص می کند، برای ارزیابی اوزان شاخص ها از روش آنتروپی استفاده شده است. پس از محاسبه ماتریس نرمالیزه شده و ماتریس وزن دار و استخراج بالاترین و پایین ترین ارزش برای هر شاخص به منظور محاسبه شاخص ویکور که براساس آن به رتبه بندی گزینه ها بپردازیم ارزش Sj(شاخص مطلوبیت) و Rj (شاخص تأسف) محاسبه گردید و همینطور در این مرحله شاخص ویکور که همان امتیاز نهایی هر گزینه است محاسبه شد، مقدار Q بیانگر رتبه نهایی هر استان از مجموع 11 شاخص مورد مطالعه است. این مقدار بین عدد صفر تا یک تعیین می شود و هرچه به عدد صفر نزدیکتر باشد نشان دهنده مطلوبیت و توسعه یافتگی و هرچه به عدد یک نزدیکتر باشد نمایانگر توسعه نیافتگی است. رتبه بندی براساس ارزش Q صورت گرفت به گونه ای که کمترین ارزش بالاترین اولویت را به خود اختصاص داده است. میانگین محاسبه شده برای Q در 5 استان مورد مطالعه برابر با 0.728 به دست آمد که نشان می دهد در مجموع سطح توسعه یافتگی در استانهای شمال غربی بالاتر از حد متوسط است. براساس مقدار Q از نظر شاخص های اقتصادی، استان آذربایجان غربی در رتبه 1 و  استان زنجان در رتبه آخر قرار دارد.

 

نتیجه گیری

در این مقاله، تعیین درجه توسعه یافتگی استانهای شمال غربی کشور از ابعاد مختلف ارزیابی گردید. در این بررسی مفاهیمی چون سطح توسعه یافتگی یک استان نشان دهنده میزان توسعه یافتگی آن استان از شاخص هایی بود که ارزیابی سطح توسعه استان ها براساس آنها صورت گرفته است و از آنها با عنوان شاخص های اقتصادی نام برده ایم. بنابراین استان هایی که به میزان بیشتری از این شاخص ها بهره مند بوده اند، با عنوان توسعه یافته و استانهایی که مقادیر کمتری از این شاخص ها را در خود جای داده اند و فاصله بیشتری با استان توسعه یافته داشته اند، در  ردیف توسعه نیافتگی قرار دارند. با استفاده از داده های جمع آوری شده در قالب 11 شاخص و براساس مدل ویکور(VIKOR)، نتایج تحقیق نشان می دهد که استان های آذربایجان غربی به دلیل داشتن کمترین مقدار عددی شاخص ویکور معادل 0.180 در بالاترین رتبه و آذربایجان شرقی با مقدار شاخص 0.5 در رتبه دوم و استان های اردبیل ، کردستان و زنجان با مقدار عددی شاخص به ترتیب معادل 0.978، 0.984 و 1 در رتبه های سوم تا پنجم قرار دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Iran northwestern provinces considering economic indices by VIKOR Model

نویسنده [English]

  • omid jaami
Master of Land Management Planning, Faculty of Geography, University of Tehran, Iran
چکیده [English]

Extended Abstract
Introduction
Achieving and achieving development, although today is clearly one of the sweetest and most unattainable aspirations of many countries in the world, but the idea of ​​progress and the ways to achieve it, has a long history and during different periods of human life, Different societies, especially the rival ones, have always tried to achieve the latest methods and tools for mastering nature and making better and more efficient use of its facilities in order to expand their power and abilities. The purpose of this article is to achieve the relative superiority of each province by evaluating the dominant economic indicators. For this purpose, first, using the Shannon entropy method, each of the 11 economic indicators was weighed, then in order to achieve the research results, using the data available in the Statistics Center and using the multi-criteria decision-making technique (VIKOR) for the data. In 2016, an analysis was made. According to the purpose of the research, which is to evaluate the northwestern provinces of Iran in terms of dominant economic indicators with the Vikor model, five provinces of East Azerbaijan, Western Azerbaijan, Ardabil, Zanjan and Kurdistan were studied. In this regard, Excel software has been used to calculate quantitative data in different stages of the model and Arc GIS10.3 software has been used to draw the map of the level of provinces. The results show that the provinces of West Azerbaijan have the lowest numerical value of the Vikor index equal to 0.180 in the highest rank and East Azerbaijan with the value of the index 0.5 in the second rank and the provinces of Ardabil, Kurdistan and Zanjan due to the desired value. The index numbers are 0.978, 0.984 and 1, respectively, in the third to fifth ranks.
 
Materials and Methods
The approach of the present study is quantitative research and in terms of data collection method is based on library-documentary data and by referring to the Statistics Center of Iran and receiving data from the relevant offices, which has been done descriptively-analytically. First, the relevant indicators were identified and then the share of each of the provinces was extracted. Due to the unequal importance of the indicators, the weight of these indicators was determined through the Shannon entropy model. In the next step, the VIKOR model was used to evaluate the provinces. This method prioritizes or ranks options by evaluating options based on indicators. In the end, appropriate solutions have been presented based on the obtained outputs and results. Excel software has been used to calculate quantitative data in different stages of the model and Arc GIS10.3 software has been used to prepare the map.
 
 
Results and Discussion
Indicators used: In this article, 11 important economic indicators in 2016 have been used to identify the share of the studied provinces. The indicators used in this study according to Table 1 are:
 
Table 1. Dominant economic indicators





Dominant economic indicators




X1: Men's Economic Participation Rate (Population Office, Labor and Census)




X2: Women's Economic Participation Rate (Population Office, Labor and Census)




X3: The ratio of employees in the industrial sector to the total number of employees (population office, labor force and census)




X4: The ratio of employees in the agricultural sector to the total number of employees (population office, labor force and census)




X5: The ratio of employees in the transportation sector to the total number of employees (population office, labor force and census)




X6: Percentage of employees in the construction sector compared to the total number of employees (population office, labor force and census)




X7: Percentage of the province's share in GDP (Office of Economic Accounts)




X8: Percentage of value added in industry (Economic Accounts Office)




X9: Percentage of value added in the education sector (Economic Accounts Office)




X10: Percentage of value added in the health sector (Economic Accounts Office)




X11: Percentage of value added in the mining sector (Economic Accounts Office)





 
The Vikor method prioritizes or ranks options by evaluating options based on criteria. In the Vikor technique, the criteria are not weighed, but the criteria are evaluated by other methods, and then the options are evaluated and ranked based on the criteria and combined with the value of the criteria.After collecting the data through the available statistics and converting them to the desired indicators, the raw data matrix of each indicator was defined in the study area. The decision matrix consists of options (rows) and indicators (columns). Our options are the northwestern provinces of Iran, and the indicators are 11, which were mentioned in Table 1 and coded (X1 to X11). After forming the decision matrix, normalize this matrix,Each issue may have several indicators that it is necessary to know the relative importance of the indicators, so each index is given a weight that these weights determine the relative importance of each index compared to other indicators. Entropy was used to evaluate the weights of the indicators in this case. After calculating the normalized matrix and the weighted matrix and extracting the highest and lowest values for each index in order to calculate the Vikor index according to which to rank the options, calculate the value of Sj (desirability index) and Rj (regret index). Also, at this stage, the Vikor index, which is the final score of each option, was calculated. The value of Q indicates the final rank of each province from the total of 11 indicators studied. This value is determined between zero and one, and the closer it is to zero, the more desirable and developed it is, and the closer it is to one, the less developed.The ranking was based on the value of Q, so that the lowest value is the highest priority. The calculated average for Q in the 5 provinces studied was 0.728, indicating that the overall level of development in the northwestern provinces is above average. As Table 8 shows, based on the amount of Q in terms of economic indicators, West Azerbaijan Province is ranked 1st and Zanjan Province is ranked last.
 
Conclusions
In this paper, the degree of development of the northwestern provinces of the country from different dimensions was evaluated. In this study, concepts such as the level of development of a province showed the level of development of that province was one of the indicators on the basis of which the level of development of the provinces was assessed and we have named them as economic indicators. Therefore, the provinces that have benefited the most from these indicators, as developed, and the provinces that have less values ​​of these indicators and have a greater distance from the developed province, are in the line of underdevelopment. Have. Using data collected in the form of 11 indicators and based on the VIKOR model, the research results show that the northwestern provinces of Iran differ from each other in terms of level of development. So that the provinces of West Azerbaijan are in the first place, East Azerbaijan is in the second place, Ardabil is in the third place, Kurdistan is in the fourth place and Zanjan is in the fifth place.

کلیدواژه‌ها [English]

  • evaluation
  • Development
  • Vikor model
  • economicindices
  • north western provinces
        -     آذر، عادل و علی رجب زاده(1391)، تصمیم گیری کاربردی رویکرد MADM ، تهران، انتشارات نگاه دانش، چاپ پنجم.

        -     احمدی، علی محمد و وحید شقاقی شهری(1386)، توسعه اقتصادی و برنامه ریزی، همدان، انتشارات نورعلم. چاپ اول.

        -    ازکیا، مصطفی(1370)، مقدمه ای بر جامعه شناسی توسعه روستایی، تهران، انتشارات اطلاعات. چاپ دوم.

        -     اطاعت، جواد (1390)،جمعیت و توسعة پایدار در ایران، فصلنامة رفاه اجتماعی، شماره 42 ،تهران، 47-37

        -   افراخته، حسن(1387)، مقدمه ای بر برنامه ریزی سکونتگاههای روستایی، تهران، انتشارات گنج هنر.

        -    امانپور، سعید و همکاران(1389)، تعیین درجه توسعه یافتگی شهرستانهای استان خوزستان از نظر شاخص آموزشی با استفاده از روش تاکسونومی عددی، فصلنامه آمایش محیط، شماره 17.

        -   تقوایی، مسعود و اصغر نوروزی آورگانی(1389)، تعیین و تحلیل سطوح برخورداری مناطق روستایی استانهای کشور با بهره گیری از روش تاکسونومی عددی و تحلیل خوشه ای، فصلنامه برنامه ریزی رفاه و توسعه اجتماعی، شماره 5.

        -    تقوایی، مسعود و مریم صالحی(1392)، سنجش سطوح توسعه یافتگی شهرستانهای استان همدان(با تأکید بر رویکرد تحلیل منطقه ای)، فصلنامه علمی – پژوهشی برنامه ریزی منطقه ای، سال سوم، شماره 11.

        -    حاجی هاشمی، سعید(1384)، توسعه و توسعه نیافتگی، جلد اول: کلیات، اصول و ابعاد، تهران، انتشارات گفتمان اندیشه معاصر.

        -    حریری اکبری، محمد(1378)، مدیریت توسعه، تهران، انتشارات نشرقطره.

        -     خطیب، محمدعلی(1371)، اقتصاد توسعه، تهران، انتشارات دانشگاه آزاد اسلامی، واحد تهران.

        -    رزاقی، ابراهیم(1370)، الگویی برای توسعه اقتصادی ایران، تهران، نشرنی.

        -     زارع شاه آبادی، علیرضا و کبری سرخ کمال(1388)، ارزیابی وضعیت توسعه یافتگی شهرستان قوچان با استفاده از آنالیز تاکسونومی عددی، فصلنامه جغرافیایی چشم انداز زاگرس، سال اول، شماره 1.

        -   زیاری، کرامت الله و همکاران(1388)، مبانی و تکنیک های برنامه ریزی شهری، چابهار، انتشارات دانشگاه بین المللی چابهار.

        -     زیاری، کرامت الله ، سیدمحمود زنجیرچی و کبری سرخ کمال (1390)، بررسی و رتبه بندی درجه توسعه یافتگی شهرستانهای استان خراسان رضوی با استفاده از تکنیک تاپسیس، پژوهشهای جغرافیای انسانی، شماره 72 ،تهران، 30-17

        -      شکویی، حسین(1385). اندیشه های نو در فلسفه جغرافیا، جلد دوم: فلسفه های محیطی و مکتبهای جغرافیایی، تهران، انتشارات گیتاشناسی.

        -     شکیبایی، علیرضا و سمانه خاتمی(1392)، توسعه اقتصادی و برنامه ریزی با رویکرد توسعه انسانی، تهران، انتشارات نورعلم.

        -     صادقی فر، جمیل و همکاران(1393)، تعیین درجه توسعه یافتگی شهرستانهای استان بوشهر از نظر شاخص های بهداشتی درمانی با استفاده از روش تاکسونومی عددی، مجله علوم پزشکی رازی، دوره 21، شماره 118.

        -      فتاحی، احدالله و همکاران(1392)، سنجش و اولویت بندی پایداری اجتماعی در مناطق روستایی شهرستان دلفان با استفاده از مدل تصمیم گیری ویکور(مطالعه موردی: دهستان خاوه شمالی)، فصلنامه برنامه ریزی منطقه ای، سال سوم، شماره 11.

        -      فنی، زهره(1388)، درآمدی بر توسعه، جهانی شدن و پایداری(جغرافیای توسعه)، تهران، انتشارات سازمان جغرافیایی نیروهای مسلح.

        -      گروبوسکی، ریچارد و دیگران(1390)، توسعه اقتصادی با رویکرد منطقه ای، نهادی و تاریخی، ترجمه ی محمدرضا منجذب، تهران، انتشارات نورعلم.

        -    لطفی، صدیقه و همکاران(1389)،  درجه بندی توسعه  شهرستانهای استان مازندران با استفاده از مدل تاکسونومی عددی، فصلنامه جغرافیایی چشم انداز زاگرس، سال دوم، شماره 4.

        -    مرکزآمار ایران(1390)، دفتر جمعیت، نیروی انسانی و سرشماری.

        -     مرکزآمار ایران(1395)، دفتر جمعیت، نیروی انسانی و سرشماری.

        -     مسعود، محمد و امیر محمد معززی مهر و سید نیما شبیری(1390)، تعیین درجه توسعه نیافتگی شهرستان های استان اصفهان با تکنیک تاکسونومی عددی، مطالعات و پژوهش های شهری و منطقه ای، سال دوم، شماره 8. 

 

 

-         Badakhshan Zeinab, mehrabi boshrabadi hossein, mirzaei khalilabadi hamidreza (2019).Grouping the Villages of Iran's Provinces on the Basis of Economic Infrastructure and Human and Development Indexes, Journal VILLAGE AND DEVELOPMENT Volume 21, Number 4 ; Page(s) 29 To 46

-         Figen, C. and Ozkan, B.( 2013): Agricultural value added and economic growthin the European Union accession process, New medit: Mediterranean journal of economics, agriculture and environment = Revue méditerranéenne d'economie, agriculture ET environment, ISSN 1594-5685, Vol. 12, Nº. 4 (diciembre), 2013, págs. 62-71.

-         Fukuda P.S., Lopes C., MalikKH. (2002), Capacity for Development: New Solutions to old Problems, Earthscan, London and Virginia, UNDP.

-         GAO, Y. ZHENG, Y.and Angang, H. Bo. M. (2015): Input–Output-Based Genuine Value Added and Genuine Productivity in China’s Industrial Sectors (1995-2010), institute of developing economics.

-         Harrison,ph, and Todes(2001).The Use of Spatial Framework in Regional Development in south Africa,Regional Studies,Vol.35

-         International Labour Office. (2003). Key Indication of the labour marke. Third edition. ILO, Geneva.

-         Johnston, B. F. and John Cownie(1996), The seed – Fertilizer Revolution and Labor Force Absorption, American Economic Review.

-         Mankiw, G. (2004): Macroeconomics, baradaran. Sh. H and parsaeian. A, Tehran, Allameh Tabatabai University Press, 2004, second edition, p. 28.

-         Odedokun, M.O. (1996): Alternative Econometric Approaches for Analyzing the Role of the Financial Sector in Economic Growth: Time-Series Evidence from LDCs, Journal of Development Economics, 50: 119-146.

-         Shahnazi Karim, Entezar Elnaz(2019)Estimation and Comparative Analysis of Socio-Economic Indexes for Urban Areas of Iran’s Provinces During The Census of 2011 (Principal Component Analysis Approach) JOURNAL OF FINANCIAL ECONOMICS (FINANCIAL ECONOMICSAND DEVELOPMENT) Volume 13 , Number 46; Page(s) 217 To 239  

-         U. N. (1951), Measures for the Economic Development of Underdeveloped Countries, New York.


مقالات آماده انتشار، پذیرفته شده
انتشار آنلاین از تاریخ 14 خرداد 1399
  • تاریخ دریافت: 12 فروردین 1399
  • تاریخ بازنگری: 01 خرداد 1399
  • تاریخ پذیرش: 14 خرداد 1399